第十八章 略懂略懂(1 / 2)

加入书签

三角函数线解不等式通过三个解法。

正弦线,

余弦线,

正切线,

主要核心为具有三角函数值的有向线段方向和三角函数值的正负长度,以及绝对值。

仔细阅读完关于三角函数线解不等式的定义和内容,余华握着铅笔,在草稿纸上画了一个由Y轴和X轴构成的标准直角坐标系,中心点记0,接着又在半径为1的距离画了一个圆,自中心点0向第一象限作一条延长线,过圆。

延长线与中心点的角记α,延长线与圆的交点设A,过点A作X轴垂线,垂点记为B。

“所以,正弦线为有向线段→BA,余弦线有向线段→OB,正切线有向线段→CD,第二象限应该是这么画……”余华看的津津有味,昨晚学习到极限难以理解的三角函数线知识点简单而轻松,感觉全身再次充满力量,铅笔在草稿纸上重新画了一个直角坐标系和圆,根据知识点画出第二象限、第三象限和第四象限的三角函数线。

画了是四个不同的三角函数线象限,接下来是一道关于三角函数线解不等式的试题,源自剑桥大学数学教授哈代。

使sin x≤cos x成立之X之一个变化区间为多少。

“根据三角函数线,sinx=BA,cosx=0B,为了使sinx≤cosx成立,则变化区间应该为-3π/4≤x≤π/4,还是很简单的嘛,只要记好公式,直接套上去就完事了。”余华飞速计算,草稿纸迅速画出直角坐标系和圆构成,以中心点0向第一象限拉出一条延长线过圆,各自标记角和交点,三下五除二就解开试题。

这道题只要找出对应的三角函数线即可,只要找到线,那就好办,只需要计算X的数值范围即可,这点可难不倒身为小小学渣的余华。

简单,轻松。

再往下看,余华乐了,一大波试题,数量远比解析几何还多,更多关于三角函数线解不等式的基础试题和变化试题,基本都由剑桥大学的哈代教授所出,难度层层上升,目的就是为了提升学生的熟练度,增加经验。

当然,在无数学生们看来,哈代教授的良苦用心,完全变成了精心折磨。

“开冲开冲……”余华有些兴奋地搓了搓手,心中充满战意,吐出一口白色雾气,别人对于这波经验畏之如虎,他甘之如饴。

现如今,余华基本掌握高中算学80%左右的基础知识点,剩下的20%全是疑难重点,需要耗费大量时间和精力进行攻克,三角函数线就是其中之一。

试题越多,经验越丰富,小小学渣考取国立清华的目标,就会越来越近。

冲冲冲!

思路清晰,脑海反应灵敏,余华一口气做了好几道题,对于三角函数线解不等式类型的题目愈发娴熟,很快,他来到最后一道压轴变量题目。

利用三角函数线,写出满足下列条件之角α之集合。

(1)sinα≥√2 ̄/2;

(2)cosα≤1/2;

(3)|α|.

不愧是压轴题,三角函数线+不等式+集合的综合体型。

余华一怔,感觉到一丝难度,心生挑战之意,草稿纸画出标准坐标系和单位圆,再画出第一象限和第二象限的延长线,完成作图。

(1)∵在[0,2π)内,sinπ/4=sin3π/4=√2 ̄/2,0A,0B分别为π/4,3π/4的终边,由正弦线可知,满足sinα≥√2 ̄/2之角之终边,在劣弧AB内,

∴sinα≥√2 ̄/2的解集为,

{α|π/4+2kπ≤α≤3π/4+2kπ,k∈Z};

(2),∵在[0,2π)内,cosπ/3=cos5π/3=1/2……

一边推演计算,一边按照标准进行解题,写下解题步骤,洋洋洒洒写了十分钟,余华终于是放下铅笔,脸上露出一丝成就感,这道哈代教授出的压轴题,解开了。

草稿纸上,满是令人眼花缭乱的数学符号和字符,这些字符背后表明了一点,三角函数线解不等式的疑难重点已经完全掌握。

心中颇为自豪,余华回过神来,忽然察觉到身边站着一个人,抬头望去,只见一道身穿黑色中山装的男生站在长桌旁,身材瘦弱,圆形眼镜,身上散发着一股浓浓的书生气息,满脸呆愣,眼中透着不可思议之色。

余华感受到对方的目光,有些疑惑:“呃……你怎么了?”

这人同为理学一班的学生,叫什么余华有点忘了,平日里成绩似乎不怎么好,好像又在努力学习那种。

“咕噜。”

瘦弱男生吞了吞喉咙,看着余华,双眼透着浓浓震撼,赶紧作揖问道:“余桦,你会做这道三角术题目?”

三角术!

这是理学一班公认的超级难点,无论是班级学渣,还是班级大佬,每次面临三角术之题目,全都一片哀嚎。

然而,他

↑返回顶部↑

书页/目录